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A B S T R A C T

This thesis analyses the effect spin-orbit coupling has on the dis-
persion of Langmuir waves in magnetized plasmas, using re-
cently developed kinetic theories of plasmas including quantum
mechanical and relativistic effects. Two new wave modes appear
close to the resonance ∆ωc = (g/2− 1)ωc, where ωc is the cy-
clotron frequency and g is the electron gyromagnetic ratio. For
considered long wave lengths the deviation from this resonance
is very small. The wave modes are also very weakly damped.
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1
O V E RV I E W

Considering recent developments of kinetic models for plasmas
along with the knowledge of how to generalize these models to
include spin-orbit coupling, interesting new problems to study
arise. In this thesis we started from a semi-classical and semi-
relativistic kinetic theory of plasmas and examined how the dis-
persion of Langmuir waves propagating in a magnetized plasma
is affected by the inclusion of spin-orbit coupling. The method
we used was to simplify a Lorentz invariant evolution equation
by linearizing it and observe how the motion of the particles
follow the oscillations of Langmuir waves. Maxwell’s equations
then allowed us to solve the problem and find the dispersion
relation. From this dispersion relation new wave modes were
expected to appear.

We will start by briefly introducing the concepts and theories
used.

1.1 introduction to plasmas

Plasmas are popularly termed as the fourth state of matter along-
side gases, fluids and solids. As defined by D. R. Nicholson [6]:

“A plasma is a gas of charged particles, in which the potential energy
of a typical particle due to its nearest neighbour is much smaller than
its kinetic energy.”

Having a high kinetic energy often (but not necessarily!) coin-
cides with having a high temperature as well as electrons having
a high enough energy to break free from its host atom, plasmas
hence often consist of mostly ionized atoms. A comparably low
potential energy due to neighbouring particles means that col-
lective effects of all particles dominate over local effects in small
concentrations of particles. For instance, plasmas exhibit a phe-
nomenon known as Debye shielding, that small concentrations
of charges or potentials are shielded from electric fields of col-
lective particles as nearby particles rush in to negate the effect.
Thanks to this shielding, collisions in plasmas generally have a
weak effect which is what we will consider for our theories in
this paper.

Considered to make up more than 99 % of all matter in the
known universe (excluding the recently discovered dark matter),
examples of plasmas are mainly found in astrophysics, such as
stars, solar winds and nebulas. On the earth the element can be
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2 overview

seen in for example lightning strikes, aurora borealis and plasma
displays.

1.2 langmuir waves

Langmuir waves, which are studied in this thesis, are by defi-
nition plasma oscillations. That is, if a charge seperation occurs
in a plasma the particles will react to the electric field and be-
gin to oscillate around a point of equilibrium [3]. The waves are
electrostatic by nature and propagate along an external magnetic
field. Using Maxwell’s laws it is easy to see that they hence do
not modify or create any magnetic field.

1.3 spin-orbit coupling

Spin-orbit coupling is a relativistic effect arising as the particles
move in an electric field: As they move in the field they feel a
magnetic field in their rest frame as per the theory of special
relativity and this magnetic field interracts with the spin [5]. In,
for instance, atomic and molecular theories this coupling mod-
ifies the energies of particles considerably, giving rise to a fine
structure of energy levels [4].

1.4 semi-classical spin

A semi-classical theory of spin will be considered in this work,
wherein spin is described as a classic vector on the unit sphere.
This picture is intrinsically wrong since a spin can not ever point
in any one direction, we can however use a distribution function
of the probability density to measure a spin in a certain direc-
tion. For a given classic spin vector the distribution function
then yields the probability to measure the spin in that direction.



2
K I N E T I C T H E O RY

The basis of this thesis is the kinetic theory of plasmas: A de-
scription that is intuitive, contains all the classic effects of plas-
mas (for instance, Landau damping) and can be modified to in-
clude quantum mechanical and relativistic effects. This chapter
gives a brief introduction to the theory and how it has been mod-
ified to include the effects we are studying.

2.1 classical theory

The classic distribution function f (~x,~v, t) gives the probability
density to find a particle at position ~x with velocity ~v at time
t. An equation for how this distribution changes over time can
be derived exactly from the Klimontovich or Liouville equation
[6], but for our purposes a simple motivation will be sufficient.
If considering a single particle in phase-space, at the location of
the particle the probability to find it is always one. Hence along
the particle path the value of the distribution function does not
change:

0 =
D f
Dt

=
∂ f
∂t

+
d~x
dt
· ∂ f

∂~x
+

d~v
dt
· ∂ f

∂~v
(2.1)

As the acceleration is due to the Lorentz force for a particle in
an electric field ~E and magnetic field ~B, we have

d~x
dt

= ~v (2.2)

d~v
dt

=
q
m
(~E +~v× ~B) , (2.3)

where q denotes the charge of the particle and m the mass. Thus
we get

0 =
∂ f
∂t

+~v · ∂ f
∂~x

+
q
m
(~E +~v× ~B) · ∂ f

∂~v
(2.4)

which is the Vlasov equation, or collision-free Boltzmann equa-
tion. As implied by the motivation we used to derive it, it de-
scribes how an ensemble of particles in a plasma (where indi-
vidual effects as collisions are less important than the collective
effects) evolves with time under applied electromagnetic fields.
The equation is consistent with quantum mechanics considering
sufficiently long scale lengths.
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4 kinetic theory

For this system, our electromagnetic sources are the charge
distribution ρ and the free current density~jF, both of which can
be described using the distribution function f (~x,~v, t):

ρ = q
∫

d3v f (~x,~v, t) (2.5)

~jF = q
∫

d3v~v f (~x,~v, t) (2.6)

These expressions can be grasped intuitively by considering that
the integral

∫
d3v f (~x,~v, t) gives the particle density n0 at posi-

tion ~x and time t, which means that qn0 is the charge density
at those points. The integral

∫
d3v~v f (~x,~v, t) on the other hand

gives an overall velocity ~u of the particle density n0 and qn0~u is
hence the current density.

2.2 quantum mechanical effects

Adding quantum effects to this equation will for our purposes be
done using a semi-classical spin vector ~s and adding this as an-
other independent variable in the distribution function: f (~x,~v,~s, t)
(it can however also be derived fully quantum mechanically us-
ing the density matrix and phase-space distribution functions
[9]). Using the same motivation as before, a spin dependent
term is added to eq. (2.1)

0 =
D f
Dt

=
∂ f
∂t

+
d~x
dt
· ∂ f

∂~x
+

d~v
dt
· ∂ f

∂~v
+

d~s
dt
· ∂ f

∂~s
. (2.7)

In the quantum mechanical case, the time evolution of the veloc-
ity and spin are calculated from the Pauli Hamiltonian as [2],

d~v
dt

=
q
m
(~E +~v× ~B) +

µ

m
∂

∂~x
(~s · ~B) (2.8)

d~s
dt

=
2µ

h̄
(~s× ~B) , (2.9)

where µ is the magnetic moment of the particle and h̄ is Planck’s
reduced constant. The second term in eq. (2.8) is coupled to
the spin dipole moment working to minimize its potential in a
changing magnetic field, while the term in eq. (2.9) describes a
spin precessing around the magnetic field. Lastly, a quantum
mechanical effect not explained by the semi-classical theory is
added to the equation,

µ

m
∂

∂~x
·
[(

~B · ∂

∂~s

)
∂ f
∂~v

]
. (2.10)

This term compensates for the fact that all components of the
spin can not be known simultaneously [9].



2.3 relativistic effects 5

Everything included, we get a quantum mechanical, non-relativistic
evolution equation as

0 =
∂ f
∂t

+~v · ∂ f
∂~x

+

[
q
m
(~E +~v× ~B) +

µ

m
∂

∂~x
(~s · ~B)

]
· ∂ f

∂~v

+
2µ

h̄
(~s× ~B) · ∂ f

∂~s
+

µ

m
∂

∂~x
·
[(

~B · ∂

∂~s

)
∂ f
∂~v

] (2.11)

which is valid in the long scale length limit, where the potential
changes are small over the distance of the thermal de Broglie
wave length h̄/mvt and vt is the thermal velocity of the particle.

The magnetization from the particle spin also gives an extra
contribution to the current density in addition to the free current,
as [2]

~jM = ∇× 3µ
∫

dΩ~s f (~x,~v,~s, t) (2.12)

where the factor 3 is to account for the spin never pointing in
any one direction but being smeared out over the surface of a
sphere and dΩ = d3v d2s is the complete integration element in
our phase-space.

2.3 relativistic effects

Now modifying the quantum mechanical evolution equation to
create a Lorentz invariant theory gives us [1]

0 =
∂ f
∂t

+~v · ∂ f
∂~x

+

{
q
m
(~E +~v× ~B) +

µ

m
∂

∂~x

[
~s ·
(
~B− ~v× ~E

c2

)]}
· ∂ f

∂~v

+
2µ

h̄

[
~s×

(
~B− ~v× ~E

c2

)]
· ∂ f

∂~s

+
µ

m
∂

∂~x
·
{[(

~B− ~v× ~E
c2

)
· ∂

∂~s

]
∂ f
∂~v

}
,

(2.13)

where c is the speed of light in vacuum and the spin-orbit cou-
pling terms are present. These terms appear as the additional
magnetic fields ~B = −(~v × ~E)/c2 that the particles perceive in
their rest frame as they move in another frame of reference [5].
Containing all the effects we wish to study in this project, this
thus is the evolution equation that will serve as a basis for our
calculations. Note that while this argument gives the right re-
sult, it is not as rigorous as it seems – a more careful derivation
of the transforming properties of all variables must be made.

As with the evolution equation, the current density will also
be affected when considering effects of special relativity as [1]

~jP = −3µ

c2
∂

∂t

∫
dΩ~v×~s f (~x,~v,~s, t) . (2.14)



6 kinetic theory

This added polarization current can be seen as a relativistic cor-
rection of the electric field for the moving magnetization from
eq. (2.12). We will give a brief motivation of this result, which
can be derived more explicitly using covariant tensor notation:
Ampere’s law is given as

∇× ~B = µ0~jtot +
1
c2

∂~E
∂t

, (2.15)

where the total current density is given by ~jtot = ~jF +~jM +~jP.
The non-free current densities can be written as

~jM = ∇× ~M (2.16)

~jP =
∂~P
∂t

(2.17)

for a magnetization ~M and polarization ~P [5]. Ampere’s law can
then be rewritten as

∇×
(
~B− µ0 ~M

)
= µ0~jF +

1
c2

∂

∂t

(
~E +

~P
ε0

)
. (2.18)

Noting the similarities between the magnetic and electric fields
and the magnetization and polarization, we can see that they
should transform identically into other frames of references (this
can be shown explicitly using the electromagnetic field tensor
and four-current on the same form). There is no electric dipole
moment in the rest frame of the particles and hence no contribu-
tions to the polarization. Thus the magnetization and polariza-
tion transform to first order as [5]

~M→ ~M (2.19)

~P→ ~v× ~M
c2 . (2.20)

Inserting this polarization into eq. (2.17) we thus see that a mov-
ing magnetization creates an additional current density as in
eq. (2.14), which is what we wanted to show.

Finally collecting all terms gives us the total current density
in our theory as

~jtot = q
∫

d3v~v f (~x,~v,~s, t) +∇× 3µ
∫

dΩ~s f (~x,~v,~s, t)

− 3µ

c2
∂

∂t

∫
dΩ~v×~s f (~x,~v,~s, t)

(2.21)

which is the equation we will use.
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T H E D I S P E R S I O N R E L AT I O N

To find the dispersion relation for our electrostatic waves our em-
ployed method is to linearize and Fourier analyse the kinetic the-
ory with relativistic corrections, calculate the distribution func-
tion and total current density and finally use Ampere’s law (2.15)

∇× ~B = µ0~jtot +
1
c2

∂~E
∂t

to close the system.

3.1 linearizing the evolution equation

When studying the linear modes of the relativistic evolution
equation (2.13) we are assuming that all oscillations of particle
densities and fields are small in order to simplify it. We are con-
sidering a distribution of particles f such that one term contains
a static background and one term the oscillations. We are only
considering electron oscillations by picking a suitable time-scale
such that the heavy nuclei are considered to be static. Then, set-
ting our wave vector along the z axis as~k = k ẑ, we can Fourier
analyse the oscillating electron part and get a system describing
our electron distribution to first order as

f = f0(v2, θs) + δ f (3.1)

δ f = f̃ ei(kz−ωt) . (3.2)

Using Gauss’s and Faraday’s laws

∇ · ~E =
ρ

ε0
(3.3)

∇× ~E = −∂~B
∂t

(3.4)

we can see that our oscillating distribution function (3.2) gives
rise to an oscillation of the electric field in the z direction only,
which in term means that no oscillating magnetic field is cre-
ated at all. Thus, considering an applied constant magnetic field
~B0 along the wave vector and Fourier analysing the oscillating
electric field, we get

~E = δE ẑ (3.5)
~B = B0 ẑ (3.6)

δE = Ẽ ei(kz−ωt) . (3.7)

7



8 the dispersion relation

We note that

∂

∂~x
→ ik ẑ (3.8)

∂

∂t
→ −iω (3.9)

when acting on the Fourier analysed variables.
Now linearizing the evolution equation (2.21) to first order

gives us, moving terms proportional to f0 to the right hand side
and canceling the exponentials from the Fourier analysis (see
Appendix A.1)(

∂

∂t
+~v · ∂

∂~x
−ωc

∂

∂ϕv
−ωcg

∂

∂ϕs

)
f̃ =

= −qẼ
m

∂ f0

∂vz
+

2µv⊥Ẽ
h̄c2 (cos ϕv cos ϕs + sin ϕv sin ϕs)

∂ f0

∂θs

− ikµv⊥Ẽ
mc2

(
sin θs + cos θs

∂

∂θs

)
× (cos ϕv sin ϕs − sin ϕv cos ϕs)

∂ f0

∂vz
,

(3.10)

where the cyclotron frequency ωc = qB0/m, the spin precession fre-
quency ωcg = (g/2)ωc and the electron gyromagnetic ratio g ≈
2.002319 have been introduced. The velocity is given in cylin-
drical coordinates ~v = ~v(v⊥, ϕv, vz) and the spin in spherical
~s = ~s(s, θs, ϕs). Since the considered particles are electrons, m
denotes the electron mass, µ = (g/2)µB the magnetic moment for
electrons, where µB = qh̄/2m is the Bohr magneton, and q = −|e|
the electron charge.

3.2 the distribution function

Making a series ansatz of the first order distribution function f̃
will let us handle most dependencies quite elegantly:

f̃ =
1√
2π

∞

∑
n=−∞

∞

∑
m=−∞

gn,m(vz, v⊥, θs)ψn(v⊥, ϕv) eimϕs (3.11)

where n and m are integers. ψn both has the properties of or-
thonormality

∫ 2π

0
dϕv ψn1 ψn2 =

1, if n1 = n2

0, if n1 6= n2

(3.12)

and can be expanded into a series of Bessel functions Jn′ :

ψn(v⊥, ϕv) =
1√
2π

einϕv−
ik⊥v⊥

ωv sin ϕv

=
1√
2π

∞

∑
n′=−∞

Jn′

(
k⊥v⊥

ωc

)
ei(n−n′)ϕv

(3.13)



3.2 the distribution function 9

Generally this would mean that our solutions would contain
Bessel functions, but since we are studying electrostatic Lang-
muir waves (k⊥ = 0) they will simplify quite a bit as only one
term survives:

Jn′ =

1 , if n′ = 0

0 , if n′ 6= 0
(3.14)

Inserting (3.13) into (3.11) and performing the azimuthal angu-
lar derivatives on the left hand side of eq. (3.10) for this ansatz
now just spits out the integers n and m respectively. To solve the
equation we then multiply both sides by the complex conjugate
ψ∗n′ e

−im′ϕs /
√

2π and integrate over ϕv ϕs, orthonormality giving

(
−iω + ikvz − inωc − imωcg

)
gn,m = In,m. (3.15)

In,m are integrals surviving from the right hand side of eq. (3.10)
for different n and m:

In,m =
1

2π

∫ 2π

0
dϕv

∫ 2π

0
dϕs e−inϕv e−imϕs

×
[
−qẼ

m
∂ f0

∂vz
+

2µv⊥Ẽ
h̄c2 (cos ϕv cos ϕs + sin ϕv sin ϕs)

∂ f0

∂θs

− ikµv⊥Ẽ
mc2

(
sin θs + cos θs

∂

∂θs

)
× (cos ϕv sin ϕs − sin ϕv cos ϕs)

∂ f0

∂vz

]
(3.16)

We now use the following properties

∫ 2π

0
dϕ einϕ =

2π, if n = 0

0, if n 6= 0
(3.17)

∫ 2π

0
dϕ cos ϕ einϕ =

π, if n = ±1

0, if n 6= ±1
(3.18)

∫ 2π

0
dϕ sin ϕ einϕ =

±iπ, if n = ±1

0, if n 6= ±1
(3.19)

to evaluate the integrals and we then note that only three terms
will survive (see Appendix A.2):

I0,0 = −2πqẼ
m

∂ f0

∂vz
(3.20)

I±1,∓1 = ± πkv⊥µẼ
mc2

(
sin θs + cos θs

∂

∂θs

)
∂ f0

∂vz

+
2πv⊥µẼ

h̄c2
∂ f0

∂θs

(3.21)



10 the dispersion relation

Using eq. (3.15) we see that

gn,m =
In,m

−i(ω− kvz + nωc + mωcg)
(3.22)

from which we can now finally by putting everything together
calculate f̃ using the ansatz we made (3.11):

f̃ = − iqẼ
m

∂ f0

∂vz

1
w− kvz

+
ikv⊥µẼ

2mc2

(
sin θs + cos θs

∂

∂θs

)
∂ f0

∂vz

×
(

eiϕv e−iϕs

ω− ∆ωc − kvz
− e−iϕv eiϕs

ω + ∆ωc − kvz

)
+

iv⊥µẼ
h̄c2

∂ f0

∂θs

×
(

eiϕv e−iϕs

ω− ∆ωc − kvz
+

e−iϕv eiϕs

ω + ∆ωc − kvz

)
(3.23)

where the frequency ∆ωc = ωcg −ωc has been introduced.

3.3 current density

The total current density can now be calculated, using eqs. (3.23)
and (2.21) (see Appendix A.3). Our total current density ~jtot is
becomes

~jtot = −
iq2Ẽ

m
ẑ
∫

dΩ vz
∂ f0/∂vz

ω− kvz

+
i3kµ2ωẼ

4mc4 ẑ
∫

dΩ v2
⊥ sin θs

(
sin θs + cos θs

∂

∂θs

)
×
(

∂ f0/∂vz

ω− ∆ωc − kvz
+

∂ f0/∂vz

ω + ∆ωc − kvz

)
+

i3µ2ωẼ
2h̄c4 ẑ

∫
dΩ v2

⊥ sin θs

×
(

∂ f0/∂θs

ω− ∆ωc − kvz
− ∂ f0/∂θs

ω + ∆ωc − kvz

)
,

(3.24)

where the first term corresponds to the classic free current and
the other terms to the polarization current, the magnetization
current gives no contribution at all.

If we would not just be dealing with electrostatic waves the
current density would have parts in the perpendicular x and y
directions, with all parts containing Bessel function terms.
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3.4 the general dispersion relation

Now, knowing that our constant magnetic field has no curl and
the Fourier analysis result (∂/∂t)~E = −iωẼ ẑ, Ampere’s law
(2.15) becomes

0 = µ0~jtot −
iω
c2 Ẽ ẑ. (3.25)

Inserting our current density (3.24), we note that all terms point
along the z axis and contain a factor iẼ, thus rearranging the
expression we get that

0 = −ω−ω2
p

∫
dΩ vz

∂ f̂0/∂vz

ω− kvz

+
3kh̄2ω2

pω

16m2c4

∫
dΩ v2

⊥ sin θs

(
sin θs + cos θs

∂

∂θs

)
×
(

∂ f̂0/∂vz

ω− ∆ωc − kvz
+

∂ f̂0/∂vz

ω + ∆ωc − kvz

)

+
3h̄ω2

pω

8mc4

∫
dΩ v2

⊥ sin θs

×
(

∂ f̂0/∂θs

ω− ∆ωc − kvz
− ∂ f̂0/∂θs

ω + ∆ωc − kvz

)
,

(3.26)

where f̂0 = f0/n0 has been introduced to rescale the distribution
function, ω2

p = q2n0/ε0m is the electron plasma frequency and
n0 is the total number of particles. This is our general dispersion
relation for Langmuir waves with spin-orbit coupling, leaving us
three integrals to solve for specific distribution functions f0 and
studied approximations, with all spin dependence contained in
the second and third integrals.

We can now presume that we will find wave modes when
ω ∼ ∆ωc since the last terms will be large at that point for small
k.
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A N A LY S I N G T H E D I S P E R S I O N R E L AT I O N

To analyse the dispersion relation we will need to solve the in-
volved integrals, whom are complicated a bit by the included
denominators involving vz. We will be studying a distribution
function f0 = f0(v2, θs) where the velocity dependent part takes
the form of an ordinary Maxwellian distribution and the spin
dependent part takes a convenient form [9],

f0(v2, θs) =
n0

NM
e
− v2

v2
t × 1

NS

[
e

µB0
kBT (1 + cos θs) + e−

µB0
kBT (1− cos θs)

]
(4.1)

where the prefactors are given to normalize the distribution as

1
NM

=

(
1

πv2
t

)3/2

(4.2)

1
NS

=
1

4π cosh
(

µB0
kBT

) (4.3)

for the Maxwellian and spin part respectively, T is the temper-
ature, kB is the Boltzmann constant and vt =

√
2 kBT/m is the

thermal velocity. To simplify the integrals we will consider the
situation when the frequency is close to resonance with ∆ωc,

ω ∼ ∆ωc (4.4)

thus neglecting the terms with denominators 1/(ω + ∆ωc− kvz)

in (3.26) since they will be small compared to the terms with
denominators 1/(ω− ∆ωc − kvz).

4.1 high-frequency limit

The high frequency limit is in our case as

kvz � ω− ∆ωc , (4.5)

letting us expand the denominators of the dispersion relation
(3.26) and, for the moment neglecting the poles in ω = kvz and

13



14 analysing the dispersion relation

Figure 1: Two new wave modes appear close to the resonant frequency.
Plotted for astrophysical values:
n0 = 1021 cm−3 , T = 1010 K and B0 = 6× 106 T

ω−∆ωc = kvz which will be expanded upon in the next section,
solve the relation to (see Appendix A.4)

ω2

{
1 +

h̄2ω2
p

4m2c4

[
k2v2

t
(ω− ∆ωc)2 +

3k4v4
t

2(ω− ∆ωc)4

]

+
h̄2ω2

p

4m2c4
mv2

t
2h̄

tanh
(

µB0

kBT

) [
2

(ω− ∆ωc)
+

k2v2
t

(ω− ∆ωc)3

]}

= ω2
p +

3ω2
pk2v2

t

2ω2 . (4.6)

This relation gives rise to two new wave modes arising from the
resonant frequency ∆ωc in addition to the standard mode for
classical Langmuir waves. See Figure 1. We can see that frequen-
cies need to be very close to the resonance in order for the modes
to be found: For astrophysical applications the difference from
resonance is on the order of 10−4 for variations on the scale of
kvt ∼ ∆ωc.

4.2 landau damping

When calculating the integrals in the previous section the sin-
gularities at vz = (ω − ∆ωc)/k and vz = ω/k where neglected
as the expansion was performed. In reality the solution is not
that simple as the singularities contribute to an effect named af-
ter its discoverer, Landau damping, where particles may absorb
energy from, or lose energy to, resonant electromagnetic waves
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[3, 6]. As an aside, the resonant wave-particle process that we
are interested in may resemble cyclotron damping even more than
Landau damping. From a mathematical point of view, however,
all resonant wave-particle processes are quite similar within lin-
ear theory, hence we will not consider the distinction between
the two in this thesis.

To treat the problem correctly one has to assume that ω has
an imaginary part in addition to the real, ω = ωr − iωi, noting
that for positive frequencies ωi the oscillations in eq. (3.2) will
decrease with time. This imaginary part means that our line
integral over the vz axis has to be turned into a contour integral
in the complex plane. This is a slight oversimplification, but it
is sufficient for our purposes. See e. g. [8] for a more detailed
discussion on the issues of Landau damping.

For a considered small damping term and using methods from
standard residue theory, [6, 7] the integrals in our dispersion re-
lation (3.26) are calculated by using∫ ∞

−∞
dz

∂ f /∂z
z− a

= p.v.
∫ ∞

−∞
dz

∂ f /∂z
z− a

+ iπ
(

∂ f
∂z

)∣∣∣∣
z=a

, (4.7)

where p.v. denotes the principal value of the integral and the
imaginary contribution comes from integrating around the sin-
gularity in a semi-circle. Still studying the same high frequency
limit and resonance the principal values of our integrals are as
already calculated without considering the singularity, as done
in the previous section ending up with eq. (4.6). The remaining
imaginary terms gives contributions as, only considering the in-
tegrals over vz,

− iπ
k

vz
∂e
− v2

z
v2

t

∂vz


∣∣∣∣∣∣∣
vz=

ωr
k

= −2iπω2
r

k3v2
t

e
− ω2

r
k2v2

t (4.8)

− iπ
k

∂e
− v2

z
v2

t

∂vz


∣∣∣∣∣∣∣
vz=

ωr∓∆ωc
k

= −2iπ(ωr ∓ ∆ωc)

k2v2
t

e
− (ωr∓∆ωc)2

k2v2
t

(4.9)

− iπ
k

(
e
− v2

z
v2

t

)∣∣∣∣∣
vz=

ωr∓∆ωc
k

= − iπ
k

e
− (ωr∓∆ωc)2

k2v2
t . (4.10)

As ωr ∼ ∆ωc we can once again ignore the terms proportional
to exp[−(ωr + ∆ωc)/(k2v2

t )].
Yet another imaginary part comes from explicitly inserting

ω = ωr − iωi in in the dispersion relation (3.26). Finally solv-
ing for ωi [6] gives the damping term: For our purposes it will
be sufficient to do this with keeping only the terms to first order
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Figure 2: The upper wave mode ωr/∆ωc− 1 (solid line) plotted against
the corresponding imaginary frequency ωi/∆ωc (dashed
line). Plotted for astrophysical values:
n0 = 1021 cm−3 , T = 1010 K and B0 = 6× 106 T

from the principal values on the left and the largest residue term
on the right hand side,

(ωr − iωi)
2 +

h̄2ω2
p

4m2c4
mv2

t
h̄

tanh
(

µB0

kBT

)
(ωr − iωi)

2

ωr − iωi − ∆ωc
=

= −i
h̄2ω2

p

4m2c4
mv2

t
h̄

tanh
(

µB0

kBT

)
(ωr − iωi)

2

kvt
e−
(

ωr−iωi−∆ωc
kvt

)2

.

(4.11)

Ignoring the very small terms of ω2
i , this is solved to

ωi =

h̄2ω2
p

4m2c4
mv2

t
h̄ tanh

(
µB0
kBT

)
∆ωc

ωr
kvt

e−
(

ωr−∆ωc
kvt

)2

{
1 +

h̄2ω2
p

4m2c4
mv2

t
h̄ tanh

(
µB0
kBT

)
∆ωc

[
ωr−2∆ωc
(ωr−∆ωc)2

]} (4.12)

which is our damping term to first order. For the considered
limit the damping is very small, only being of the same order
as the difference between the wave modes and the resonance at
very small values of k. See Figure 2.

4.3 summary

The modified kinetic theory including the spin-orbit terms and
the polarization current gives rise to two new wave modes close
to the resonance ω ∼ ∆ωc. For small wave numbers the modes
are very close to the resonance even for astrophysical applica-
tions, allowing deviations on the order of ω ∼ ∆ωc ± 10−4 for



4.3 summary 17

variations on the scale of kvt ∼ ∆ωc. These additional wave
modes are very weakly damped.





A
C A L C U L AT I O N S

This appendix contains some calculations omitted in the main
text.

a.1 linearizing the evolution equation

To linearize the evolution equation (2.13) we insert the chosen
forms of our variables (3.1), (3.5) and (3.6)

f = f0(v2, θs) + δ f
~E = δE ẑ
~B = B0 ẑ ,

into it and study terms of total first order. Keeping terms propor-
tional to δ f on the left hand side and moving terms proportional
to f0 to the right hand side, we get

∂ δ f
∂t

+~v · ∂ δ f
∂~x

+

[
q
m
~v× ~B0 +

µ

m
∂

∂~x
(~s · ~B0)

]
· ∂ δ f

∂~v

+
2µ

h̄
(~s× ~B0) ·

∂ δ f
∂~s

+
µ

m
∂

∂~x
·
[(

~B0 ·
∂

∂~s

)
∂

∂~v

]
δ f =

= −
{

q δE
m

ẑ− µ

mc2
∂

∂~x
[
~s · (~v× δE ẑ)

]}
· ∂ f0

∂~v

− 2µ

h̄c2

[
~s× (~v× δE ẑ)

]
· ∂ f0

∂~s

− µ

mc2
∂

∂~x
·
{[

(~v× δE ẑ) · ∂

∂~s

]
∂

∂~v

}
f0 ,

(A.1)

which then is our first order linearized evolution equation. Us-
ing cylindrical coordinates for the velocity (~v = ~v(v⊥, ϕv, vz))

and spherical for the semiclassical spin vector (~s =~s(θs, ϕs))

~v = x̂ v⊥ cos ϕv + ŷ v⊥ sin ϕv + ẑ vz (A.2)

~s = x̂ sin θs cos ϕs + ŷ sin θs sin ϕs + ẑ cos θs (A.3)

most of the terms in the linearized equation can be calculated.
Keeping in mind our Fourier analysis (3.2) and (3.7)

δ f = f̃ ei(kz−ωt)

δE = Ẽ ei(kz−ωt)

and the accompanying properties (3.8)–(3.9)

∂

∂~x
→ ik ẑ

∂

∂t
→ −iω

19
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when acting on oscillating exponentials, we can from the left
hand side of (A.1) calculate

∂

∂~x
(~s · ~B0) = 0 (A.4)

~v× ~B0 = −B0v⊥ ϕ̂v (A.5)

~s× ~B0 = − sin θs ϕ̂s (A.6)
∂

∂~x
·
[(

~B0 ·
∂

∂~s

)
∂

∂~v

]
= 0 (A.7)

since the magnetic field is constant. Similarly, from the right
hand side we can calculate

δE ẑ · ∂

∂~v
= δE

∂

∂vz
(A.8)

∂

∂~x
[
~s · (~v× δE ẑ)

]
· ∂

∂~v
= −ikv⊥δE sin θs

× (cos ϕv sin ϕs − sin ϕv cos ϕs)
∂

∂vz

(A.9)

∂

∂~x
·
[
(~v× δE ẑ) · ∂

∂~s

]
∂

∂~v
= −ikv⊥δE cos θs

×(cos ϕv sin ϕs − sin ϕv cos ϕs)
∂

∂θs

∂

∂vz
(A.10)[

~s× (~v× δE ẑ)
]
· ∂

∂~s
= v⊥δE

×( cos ϕv cos ϕs + sin ϕv sin ϕs)
∂

∂θs
.

(A.11)

Collecting all terms, this gives us a linearized and Fourier anal-
ysed evolution equation as(

∂

∂t
+~v · ∂

∂~x
−ωc

∂

∂ϕv
−ωcg

∂

∂ϕs

)
δ f =

= −qδE
m

∂ f0

∂vz

+
2µv⊥δE

h̄c2 (cos ϕv cos ϕs + sin ϕv sin ϕs)
∂ f0

∂θs

− ikµv⊥δE
mc2

(
sin θs + cos θs

∂

∂θs

)
× (cos ϕv sin ϕs − sin ϕv cos ϕs)

∂ f0

∂vz
,

(A.12)

where the cyclotron frequency ωc = qB0/m, the spin precession
frequency ωcg = (g/2)ωc and the electron gyromagnetic ratio
g have been introduced. Canceling the exponentials from the
Fourier analysis gives us the final expression in our calculations
(3.10).



A.2 azimuthal angular integrals In,m 21

a.2 azimuthal angular integrals In,m

To solve the angular integrals (3.16)

In,m =
1

2π

∫ 2π

0
dϕv

∫ 2π

0
dϕs e−inϕv e−imϕs

×
[
−qẼ

m
∂ f0

∂vz
+

2µv⊥Ẽ
h̄c2 (cos ϕv cos ϕs + sin ϕv sin ϕs)

∂ f0

∂θs

− ikµv⊥Ẽ
mc2

(
sin θs + cos θs

∂

∂θs

)
× (cos ϕv sin ϕs − sin ϕv cos ϕs)

∂ f0

∂vz

]
the properties (3.17)–(3.19)

∫ 2π

0
dϕ einϕ =

2π, if n = 0

0, if n 6= 0

∫ 2π

0
dϕ cos ϕ einϕ =

π, if n = ±1

0, if n 6= ±1

∫ 2π

0
dϕ sin ϕ einϕ =

±iπ, if n = ±1

0, if n 6= ±1

will be used: We note that since all terms contain the exponen-
tials only terms with n, m = 0,±1 will survive at all. The inte-
grals surviving are

I0,0 = − qẼ
2πm

∂ f0

∂vz

∫ 2π

0
dϕv

∫ 2π

0
dϕs

= − qẼ
2πm

∂ f0

∂vz
· 4π2

(A.13)

I±1,∓1 = − ikv⊥µẼ
2πmc2

(
sin θs + cos θs

∂

∂θs

)
∂ f0

∂vz

×
∫ 2π

0
dϕv

∫ 2π

0
dϕs (cos ϕv sin ϕs − sin ϕv cos ϕs) e∓iϕv e±iϕs

+
v⊥µẼ
πh̄c2

∂ f0

∂θs

∫ 2π

0
dϕv

∫ 2π

0
dϕs (cos ϕv cos ϕs + sin ϕv sin ϕs) e∓iϕv e±iϕs

= − ikv⊥µẼ
2πmc2

(
sin θs + cos θs

∂

∂θs

)
∂ f0

∂vz
· (±i2π2)

+
2v⊥µẼ
2πh̄c2

∂ f0

∂θs
· 2π2 , (A.14)

which are simplified into the expressions used in the main text
(3.20)–(3.21).
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a.3 current density integrals

We are looking to calculate the total current density~jtot (2.21)

~jtot = q
∫

dΩ~v f (~x,~v,~s, t) +∇× 3µ
∫

dΩ~s f (~x,~v,~s, t)

− 3µ

c2
∂

∂t

∫
dΩ~v×~s f (~x,~v,~s, t)

using our distribution function f . However, since the unper-
turbed distribution function f0 will not give any contribution we
will only consider the perturbed f̃ (3.23)

f̃ = − iqẼ
m

∂ f0/∂vz

w− kvz

+
ikv⊥µẼ

2mc2

(
sin θs + cos θs

∂

∂θs

)
∂ f0

∂vz

×
(

eiϕv e−iϕs

ω− ∆ωc − kvz
− e−iϕv eiϕs

ω + ∆ωc − kvz

)
+

iv⊥µẼ
h̄c2

∂ f0

∂θs

(
eiϕv e−iϕs

ω− ∆ωc − kvz
+

e−iϕv eiϕs

ω + ∆ωc − kvz

)
.

The first term in our total current density, corresponding to the
free current density, is calculated by first noting that since the
velocity does not contain any spin-dependence the exponentials
over the azimuthal angles in spin-space exp (±iϕs) in f̃ are in-
tegrated to zero, nullifying all terms except one to solve. Again
using cylindrical coordinates for the velocity (A.2), we also note
that the trigonometric functions in velocity-space integrate to
zero. The free current density thus becomes

~jF = − iq2Ẽ
m

ẑ
∫

dΩ vz
∂ f0/∂vz

ω− kvz
. (A.15)

Likewise the second term in the total current density, correspond-
ing to the magnetization current ~jM, will give no contribution,
since the spin does not contain any velocity dependence and
thus the corresponding exponentials for azimuthal angles in velocity-
space integrates to zero and the remaining term simply becomes,
keeping the Fourier analysis result ∂/∂~x → ik ẑ (3.8) in mind,

~jM = −3iqµẼ
m
· ik ẑ× ẑ

∫
dΩ cos θs

∂ f0/∂vz

ω− kvz
= 0 , (A.16)

where spherical coordinates once again have been used for the
semi-classical spin vector (A.3). Finally the third term, corre-
sponding to a polarization current density~jP, is handled by not-
ing that only the z part of ~v×~s,

~v×~s = x̂ (v⊥ sin ϕv cos θs − vz sin ϕs sin θs)

+ ŷ (vz cos ϕs sin θs − v⊥ cos ϕv cos θs)

+ ẑ v⊥ sin θs(cos ϕv sin ϕs − sin ϕv cos ϕs)

(A.17)
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contains the necessary spin and velocity azimuthal angle depen-
dence to survive integration for all terms of f̃ : Note also that
as the first term in f̃ does not contain any exponentials it will
also integrate to zero for all terms. This gives us the polarization
current density like

~jP = −3µ

c2
∂

∂t
ẑ
∫

dΩ v⊥ sin θs(cos ϕv sin ϕs − sin ϕv cos ϕs)

×
{

ikv⊥µẼ
2mc2

(
sin θs + cos θs

∂

∂θs

)
∂ f0

∂vz

×
[

eiϕv e−iϕs

(ω− ∆ωc − kvz)
− e−iϕv eiϕs

(ω + ∆ωc − kvz)

]
+

iv⊥µẼ
h̄c2

∂ f0

∂θs

[
eiϕv e−iϕs

(ω− ∆ωc − kvz)
+

e−iϕv eiϕs

(ω + ∆ωc − kvz)

]}
.

(A.18)

Again using a result from the Fourier analysis ∂/∂t→ −iω (3.9)
and solving the integrals using (3.17)–(3.19) (as used in the pre-
vious section), we get

~jP =
i3kµ2ωẼ

4mc4 ẑ
∫

dΩ v2
⊥ sin θs

(
sin θs + cos θs

∂

∂θs

)
×
(

∂ f0/∂vz

ω− ∆ωc − kvz
+

∂ f0/∂vz

ω + ∆ωc − kvz

)
+

i3µ2ωẼ
2h̄c4 ẑ

∫
dΩ v2

⊥ sin θs

×
(

∂ f0/∂θs

ω− ∆ωc − kvz
− ∂ f0/∂θs

ω + ∆ωc − kvz

)
(A.19)

where the integration element dΩ has been kept for simplicity,
a normalizing factor of 1/4π2 multiplied into the equation after
the integration over the azimuthal angles have been performed.

a.4 solving the dispersion relation

We want to solve the general dispersion relation for our Lang-
muir waves (3.26)

0 = −ω−ω2
p

∫
dΩ vz

∂ f̂0/∂vz

ω− kvz

+
3kh̄2ω2

pω

16m2c4

∫
dΩ v2

⊥ sin θs

(
sin θs + cos θs

∂

∂θs

)
×
(

∂ f̂0/∂vz

ω− ∆ωc − kvz
+

∂ f̂0/∂vz

ω + ∆ωc − kvz

)

+
3h̄ω2

pω

8mc4

∫
dΩ v2

⊥ sin θs

×
(

∂ f̂0/∂θs

ω− ∆ωc − kvz
− ∂ f̂0/∂θs

ω + ∆ωc − kvz

)
,
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in the limit kvz � ω−∆ωc for an unperturbed distribution func-
tion (4.1)

f0(v2, θs) =
n0

NM
e
− v2

v2
t × 1

NS

[
e

µB0
kBT (1 + cos θs) + e−

µB0
kBT (1− cos θs)

]
and f̂0 = f0/n0. To do this we first consider the resonance ω ∼
∆ωc, which is where we presume new wave modes to appear.
This allows us to ignore the terms containing 1/(ω + ∆ωc− kvz)

since they will be comparably small. We will now expand the
remaining denominators as

1
ω− kvz

=
1
ω

+
kvz

ω2 +
k2v2

z
ω3 +

k3v3
z

ω4 + . . . (A.20)

1
ω− ∆ωc − kvz

=
1

ω− ∆ωc
+

kvz

(ω− ∆ωc)2

+
k2v2

z
(ω− ∆ωc)3 +

k3v3
z

(ω− ∆ωc)4 + . . . ,

(A.21)

cutting the expansions at fourth order.
To solve the integrals from here, we first note that integration

over vz will integrate odd functions in that space to zero. As
f0 is an even function of vz and ∂ f0/∂vz = −2vz f0/v2

t is odd,
different order terms of the expansion will survive in different
terms of the integral. Solving all integrals after this expansion
and simplification now gets us

0 = −ω +
ω2

p

ω
+

3ω2
pk2v2

t

2ω3

−
h̄2ω2

pω

4m2c4

[
k2v2

t
(ω− ∆ωc)2 +

3k4v4
t

2(ω− ∆ωc)4

]
−

h̄2ω2
p

4m2c4
mv2

t ω

2h̄
tanh

(
µB0

kBT

) [
2

(ω− ∆ωc)
+

k2v2
t

(ω− ∆ωc)3

]
.

(A.22)

Rearranging the expression we get the dispersion relation as in
eq. (4.6).
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